riverhell

/ 20220404 Week 1 - 2 /


Chapter 1 - Introduction

1.1 Definition

  • Arthur Samuel
    The field of study that gives computers the ability to learn without being explicitly programmed.
  • Tom Mitchell
    A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

1.2 Concepts

1.2.1 Classification of Machine Learning

  • Supervised Learning 监督学习:given a labeled data set; already know what a correct output/result should look like
    • Regression 回归:continuous output
    • Classification 分类:discrete output
  • Unsupervised Learning 无监督学习:given an unlabeled data set or an data set with the same labels; group the data by ourselves
    • Clustering 聚类:group the data into different clusters
    • Non-Clustering 非聚类
  • Others: Reinforcement Learning, Recommender Systems...

1.2.2 Model Representation

  • Training Set 训练集

    \[\begin{matrix} x^{(1)}_1&x^{(1)}_2&\cdots&x^{(1)}_n&&y^{(1)}\\ x^{(2)}_1&x^{(2)}_2&\cdots&x^{(2)}_n&&y^{(2)}\\ \vdots&\vdots&\ddots&\vdots&&\vdots\\ x^{(m)}_1&x^{(m)}_2&\cdots&x^{(m)}_n&&y^{(m)} \end{matrix}\]

  • 符号说明
    \(m=\) the number of training examples 训练样本的数量 - 行数
    \(n=\) the number of features 特征数量 - 列数
    \(x=\) input variable/feature 输入变量/特征
    \(y=\) output variable/target variable 输出变量/目标变量
    \((x^{(i)}_j,y^{(i)})\) :第\(j\)个特征的第 \(i\) 个训练样本,其中 \(i=1, ..., m\)\(j=1, ..., n\)

1.2.3 Cost Function 代价函数

1.2.4 Gradient Descent 梯度下降

Chapter 2 - Linear Regression 线性回归

\[\begin{matrix} x_0&x^{(1)}_1&x^{(1)}_2&\cdots&x^{(1)}_n&&y^{(1)}\\ x_0&x^{(2)}_1&x^{(2)}_2&\cdots&x^{(2)}_n&&y^{(2)}\\ \vdots&\vdots&\vdots&\ddots&\vdots&&\vdots\\ x_0&x^{(m)}_1&x^{(m)}_2&\cdots&x^{(m)}_n&&y^{(m)}\\ \\ \theta_0&\theta_1&\theta_2&\cdots&\theta_n&& \end{matrix}\]

2.1 Linear Regression with One Variable 单元线性回归

  • Hypothesis Function

    \[h_{\theta}(x)=\theta_0+\theta_1x \]

  • Cost Function - Square Error Cost Function 平方误差代价函数

\[J(\theta_0,\theta_1)=\frac{1}{2m}\displaystyle\sum_{i=1}^m(h_{\theta}(x^{(i)})-y^{(i)})^2 \]

  • Goal

    \[\min_{(\theta_0,\theta_1)}J(\theta_0,\theta_1) \]

2.2 Multivariate Linear Regression 多元线性回归

  • Hypothesis Function

    \[\theta= \left[ \begin{matrix} \theta_0\\ \theta_1\\ \vdots\\ \theta_n \end{matrix} \right],\ x= \left[ \begin{matrix} x_0\\ x_1\\ \vdots\\ x_n \end{matrix} \right]\]

    \[\begin{aligned}h_\theta(x)&=\theta_0+\theta_1x_1+\theta_2x_2+\cdots+\theta_nx_n\\ &=\theta^Tx \end{aligned}\]

  • Cost Function

    \[J(\theta^T)=\frac{1}{2m}\displaystyle\sum_{i=1}^m(h_{\theta}(x^{(i)})-y^{(i)})^2 \]

  • Goal

    \[\min_{\theta^T}J(\theta^T) \]

2.3 Algorithm Optimization

2.3.1 Gradient Descent 梯度下降法

  • 算法过程
    Repeat until convergence(simultaneous update for each \(j=1, ..., n\))

\[\begin{aligned} \theta_j &:=\theta_j-\alpha{\partial\over\partial\theta_j}J(\theta^T)\\ &:=\theta_j-\alpha{1\over{m}}\displaystyle\sum_{i=1}^m(h_{\theta}(x^{(i)})-y^{(i)})x^{(i)}_j \end{aligned}\]

  • Feature Scaling 特征缩放
    对每个特征 \(x_j\) 有$$x_j={{x_j-\mu_j}\over{s_j}}$$
    其中 \(\mu_j\)\(m\) 个特征 \(x_j\) 的平均值,\(s_j\)\(m\) 个特征 \(x_j\) 的范围(最大值与最小值之差)或标准差。
  • Learning Rate 学习率

2.3.2 Normal Equation(s) 正规方程(组)

\[X=\left[ \begin{matrix} x_0&x^{(1)}_1&x^{(1)}_2&\cdots&x^{(1)}_n\\ x_0&x^{(2)}_1&x^{(2)}_2&\cdots&x^{(2)}_n\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ x_0&x^{(m)}_1&x^{(m)}_2&\cdots&x^{(m)}_n\\ \end{matrix} \right],\ y=\left[ \begin{matrix} y^{(1)}\\ y^{(2)}\\ \vdots\\ y^{(m)}\\ \end{matrix} \right]\]

其中 \(X\)\(m\times(n+1)\) 维矩阵,\(y\)\(m\) 维的列向量。则

\[\theta=(X^TX)^{-1}X^Ty \]

如果 \(X^TX\) 不可逆(noninvertible),可能是因为:

  1. Redundant features 冗余特征:存在线性相关的两个特征,需要删除其中一个;
  2. 特征过多,如 \(m\leq n\):需要删除一些特征,或对其进行正规化(regularization)处理。

2.4 Polynomial Regression 多项式回归

If a linear \(h_\theta(x)\) can't fit the data well, we can change the behavior or curve of \(h_\theta(x)\) by making it a quadratic, cubic or square root function(or any other form).
e.g.

  • \(h_{\theta}(x)=\theta_0+\theta_1x_1+\theta_2x_1^2,\ x_2=x_1^2\)

  • \(h_{\theta}(x)=\theta_0+\theta_1x_1+\theta_2x_1^2+\theta_3x_1^3,\ x_2=x_1^2,\ x_3=x_1^3\)

  • \(h_{\theta}(x)=\theta_0+\theta_1x_1+\theta_2\sqrt{x_1},\ x_2=\sqrt{x_1}\)


相关文章: