A struct, or structure, is a custom data type that lets you name and package together multiple related values that make up a meaningful group.

Defining and Instantiating Structs

相比元组,struct中的属性是无序的

To define a struct, we enter the keyword struct and name the entire struct. A struct’s name should describe the significance of the pieces of data being grouped together. Then, inside curly brackets, we define the names and types of the pieces of data, which we call fields.

struct User {
    username: String,
    email: String,
    sign_in_count: u64,
    active: bool,
}
let user1 = User {
    email: String::from("someone@example.com"),
    username: String::from("someusername123"),
    active: true,
    sign_in_count: 1,
};

如果其属性可能被修改,那么其实例必须声明为mut可变类型

let mut user1 = User {
    email: String::from("someone@example.com"),
    username: String::from("someusername123"),
    active: true,
    sign_in_count: 1,
};

user1.email = String::from("anotheremail@example.com");

 Note that the entire instance must be mutable; Rust doesn’t allow us to mark only certain fields as mutable. As with any expression, we can construct a new instance of the struct as the last expression in the function body to implicitly return that new instance.

fn build_user(email: String, username: String) -> User {
    User {
        email: email,
        username: username,
        active: true,
        sign_in_count: 1,
    }
}

we can use the field init shorthand syntax to rewrite build_user so that it behaves exactly the same but doesn’t have the repetition of email and username

fn build_user(email: String, username: String) -> User {
    User {
        email,
        username,
        active: true,
        sign_in_count: 1,
    }
}

 

Creating Instances From Other Instances With Struct Update Syntax

It’s often useful to create a new instance of a struct that uses most of an old instance’s values but changes some. You’ll do this using struct update syntax.

let user2 = User {
    email: String::from("another@example.com"),
    username: String::from("anotherusername567"),
    active: user1.active,
    sign_in_count: user1.sign_in_count,
};

The syntax .. specifies that the remaining fields not explicitly set should have the same value as the fields in the given instance.

let user2 = User {
    email: String::from("another@example.com"),
    username: String::from("anotherusername567"),
    ..user1
};

 

完整示例

fn main() {
    println!("Hello, struct!");
    update_user();
    let user2: User = build_user("it@163.com".to_string(),"mysql".to_string());
    print_user(&user2);

    let user3: User = User{
        username: "dbcheck@163.com".to_string(),
        email: "dbcheck@163.com".to_string(),
        ..user2
    };
    print_user(&user3);
}

struct User{
    username: String,
    email: String,
    userid: u64,
    active: bool,
}

fn print_user(user1: &User){

    println!("{},{},{},{}",user1.username,user1.email,user1.userid,user1.active);
}

fn update_user(){
    let mut user1 = User{
        username: String::from("用户名"),
        email: String::from("itoracle@aliyun.com"),
        userid: 1,
        active: true,
    };
    user1.active = false;

    print_user(&user1)
}

fn build_user(email: String, username: String) -> User {
    User {
        email,
        username,
        active: true,
        userid: 1,
    }
}

 

  运行结果

    Finished dev [unoptimized + debuginfo] target(s) in 0.01s
     Running `target/debug/b_struct`
Hello, struct!
用户名,itoracle@aliyun.com,1,false
mysql,it@163.com,1,true
dbcheck@163.com,dbcheck@163.com,1,true

  

 Using Tuple Structs without Named Fields to Create Different Types

 元组结构体,无字段名称,有元组的特性

fn test_tu(){
    let _tup: (i32, f64, u8) = (500, 6.4, 1);
    let _aa = (1,2.3,"wa ka ka ");
    let (_x,_y,_z) = _aa;
    println!("The value of z is:{}",_z);

    struct Color(i32, i32, i32);
    struct Point(i32, i32, i32);

    let black = Color(0, 0, 0);
    let origin = Point(0, 0, 0);
    println!("color:{},{},{}",black.0,black.1,black.2);
    println!("origin:{},{},{}",origin.0,origin.1,origin.2);
}

输出

The value of z is:wa ka ka 
color:0,0,0
origin:0,0,0

 ownership,引用只能作用于struct对象,不能作用于其属性

 

struct Rectangle {
    width: u32,
    height: u32,
}

fn main() {
    let rect1 = Rectangle { width: 30, height: 50 };

    println!(
        "The area of the rectangle is {} square pixels.",
        area(&rect1)
    );
}

fn area(rectangle: &Rectangle) -> u32 {
    rectangle.width * rectangle.height
}

 

输出整个struct

fn main() {
    println!("Hello, struct!");
    test_user();
}


#[derive(Debug)]
struct User{
    username: String,
    email: String,
    userid: u64,
    active: bool,
}

fn test_user(){
    let u1 = User{
        username: "败者千千万,胜者唯一人".to_string(),
        email: "itoracle@163.com".to_string(),
        userid: 123,
        active: false,
    };
    println!("user:{:?}",u1);
}

 输出

Hello, sturct!
user:User { username: "败者千千万,胜者唯一人", email: "itoracle@163.com", userid: 123, active: false }

 

fn main() {
    println!("Hello, struct!");
    test_user();
}


#[derive(Debug)]
struct User{
    username: String,

    email: String,
    userid: u64,
    active: bool,
}

fn test_user(){
    let u1 = User{
        username: "败者千千万,胜者唯一人".to_string(),
        email: "itoracle@163.com".to_string(),
        userid: 123,
        active: false,
    };
    println!("user:{:#?}",u1);
}

输出

Hello, struct!
user:User {
    username: "败者千千万,胜者唯一人",
    email: "itoracle@163.com",
    userid: 123,
    active: false,
}

 

结构体方法

分两类:Methods、Associated Functions

Methods:实例相关,第一个参数必须为&self或&mut self,调用方式为 实例.方法名

Associated Functions:struct相关,无须传入self参数,跟实例没关系,是关联在struct上的,相当基于Java语言中的静态方法,调用方式为 struct名称::方法名

Methods

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {  //impl -> implementation
    fn area(&self) -> u32 {   //self -> rectangle: &Rectangle
        self.width * self.height
    }
}

fn main() {
    let rect1 = Rectangle { width: 30, height: 50 };

    println!(
        "The area of the rectangle is {} square pixels.",
        rect1.area()
    );
}

In the signature for area, we use &self instead of rectangle: &Rectangle because Rust knows the type of self is Rectangle due to this method’s being inside the impl Rectangle context. Note that we still need to use the & before self, just as we did in &Rectangle. Methods can take ownership of self, borrow self immutably as we’ve done here, or borrow self mutably, just as they can any other parameter.

We’ve chosen &self here for the same reason we used &Rectangle in the function version: we don’t want to take ownership, and we just want to read the data in the struct, not write to it. If we wanted to change the instance that we’ve called the method on as part of what the method does, we’d use &mut self as the first parameter. Having a method that takes ownership of the instance by using just self as the first parameter is rare; this technique is usually used when the method transforms self into something else and you want to prevent the caller from using the original instance after the transformation.

 Rust自动处理了对象对其方法或属性的调用

上面的例子中,方法传入的参数&self是引用类型,但其调用属性的时候使用的是self.width,其等价于(&self).width

In C and C++, two different operators are used for calling methods: you use . if you’re calling a method on the object directly and -> if you’re calling the method on a pointer to the object and need to dereference the pointer first. In other words, if object is a pointer, object->something() is similar to (*object).something().

Rust doesn’t have an equivalent to the -> operator; instead, Rust has a feature called automatic referencing and dereferencing. Calling methods is one of the few places in Rust that has this behavior.

Here’s how it works: when you call a method with object.something(), Rust automatically adds in &, &mut, or * so object matches the signature of the method. In other words, the following are the same:

p1.distance(&p2);
(&p1).distance(&p2);
The first one looks much cleaner. This automatic referencing behavior works because methods have a clear receiver—the type of self. Given the receiver and name of a method, Rust can figure out definitively whether the method is reading (&self), mutating (&mut self), or consuming (self). The fact that Rust makes borrowing implicit for method receivers is a big part of making ownership ergonomic in practice.

 

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {  //impl -> implementation
    fn area(&self) -> u32 {   //self -> rectangle: &Rectangle
        (&self).width * self.height
    }

    fn can_hold(&self, other: &Rectangle) -> bool {
        self.width > other.width && self.height > other.height
    }
}

fn main() {
    let rect1 = Rectangle { width: 30, height: 50 };

    println!(
        "The area of the rectangle is {} square pixels.",
        rect1.area()
    );

    let rect2 = Rectangle { width: 10, height: 40 };
    let rect3 = Rectangle { width: 60, height: 45 };

    println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2));
    println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3));

}

输出

The area of the rectangle is 1500 square pixels.
Can rect1 hold rect2? true
Can rect1 hold rect3? false

 

Associated Functions

Another useful feature of impl blocks is that we’re allowed to define functions within impl blocks that don’t take self as a parameter. These are called associated functions because they’re associated with the struct. They’re still functions, not methods, because they don’t have an instance of the struct to work with. You’ve already used the String::from associated function.

impl Rectangle {
    fn square(size: u32) -> Rectangle {
        Rectangle {
            width: size,
            height: size,
        }
    }
}

To call this associated function, we use the :: syntax with the struct name; let sq = Rectangle::square(3); is an example. This function is namespaced by the struct: the :: syntax is used for both associated functions and namespaces created by modules.

 

struct方法的首个参数必须是&self,或者self

&self以引用的方式使用,不涉及ownership

self 会生发ownership转移,调用一次后,不能再使用该对象

推荐使用&self

 

#[derive(Debug)]
struct Rectangle {
    width: u32,
    height: u32,
}

impl Rectangle {
    fn area(&self) -> u32 {
        self.width * self.height
    }

    fn init(&mut self, w: u32,h: u32) {
        self.width = w;
        self.height = h;
    }

}


pub fn test1() {
    let mut r1 = Rectangle {width:10, height:30};
    println!(
        "area:{}",
        r1.area()
    );

    r1.init(10,20);
    println!(
        "area:{}",
        r1.area()
    );

}

 

分类:

技术点:

相关文章:

猜你喜欢