xueqiuqiu

原文链接:https://blog.csdn.net/cao812755156/article/details/89598410  https://zhuanlan.zhihu.com/p/79284686

联邦学习简介

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。

联邦学习的系统构架

以包含两个数据拥有方(即企业 A 和 B)的场景为例介绍联邦学习的系统构架。该构架可扩展至包含多个数据拥有方的场景。假设企业 A 和 B 想联合训练一个机器学习模型,它们的业务系统分别拥有各自用户的相关数据。此外,企业 B 还拥有模型需要预测的标签数据。出于数据隐私保护和安全考虑,A 和 B 无法直接进行数据交换,可使用联邦学习系统建立模型。联邦学习系统构架由三部分构成,如图所示。

第一部分:加密样本对齐。由于两家企业的用户群体并非完全重合,系统利用基于加密的用户样本对齐技术,在 A 和 B 不公开各自数据的前提下确认双方的共有用户,并且不暴露不互相重叠的用户,以便联合这些用户的特征进行建模。第二部分:加密模型训练。在确定共有用户群体后,就可以利用这些数据训练机器学习模型。为了保证训练过程中数据的保密性,需要借助第三方协作者 C 进行加密训练。以线性回归模型为例,训练过程可分为以下 4 步(如图 所示):

第①步:协作者 C 把公钥分发给 A 和 B,用以对训练过程中需要交换的数据进行加密。

第②步:A 和 B 之间以加密形式交互用于计算梯度的中间结果。

第③步:A 和 B 分别基于加密的梯度值进行计算,同时 B 根据其标签数据计算损失,并把结果汇总给 C。C 通过汇总结果计算总梯度值并将其解密。

第④步:C 将解密后的梯度分别回传给 A 和 B,A 和 B 根据梯度更新各自模型的参数。

迭代上述步骤直至损失函数收敛,这样就完成了整个训练过程。在样本对齐及模型训练过程中,A 和 B 各自的数据均保留在本地,且训练中的数据交互也不会导致数据隐私泄露。因此,双方在联邦学习的帮助下得以实现合作训练模型。

第三部分:效果激励。联邦学习的一大特点就是它解决了为什么不同机构要加入联邦共同建模的问题,即建立模型以后模型的效果会在实际应用中表现出来,并记录在永久数据记录机制(如区块链)上。提供数据多的机构所获得的模型效果会更好,模型效果取决于数据提供方对自己和他人的贡献。这些模型的效果在联邦机制上会分发给各个机构反馈,并继续激励更多机构加入这一数据联邦。以上三部分的实施,既考虑了在多个机构间共同建模的隐私保护和效果,又考虑了以一个共识机制奖励贡献数据多的机构。所以,联邦学习是一个「闭环」的学习机制。

联邦学习优势

(1)数据隔离,数据不会泄露到外部,满足用户隐私保护和数据安全的需求;

(2)能够保证模型质量无损,不会出现负迁移,保证联邦模型比割裂的独立模型效果好;

(3)参与者地位对等,能够实现公平合作;

(4)能够保证参与各方在保持独立性的情况下,进行信息与模型参数的加密交换,并同时获得成长。

联邦学习的分类

我们把每个参与共同建模的企业称为参与方,根据多参与方之间数据分布的不同,把联邦学习分为三类:横向联邦学习、纵向联邦学习和联邦迁移学习。

横向联邦学习

适用场景:

横向联邦学习的本质是样本的联合,适用于参与者间业态相同但触达客户不同,即特征重叠多,用户重叠少时的场景,比如不同地区的银行间,他们的业务相似(特征相似),但用户不同(样本不同)

学习过程:

step1:参与方各自从服务器A下载最新模型;

step2:每个参与方利用本地数据训练模型,加密梯度上传给服务器A,服务器A聚合各用户的梯度更新模型参数;

step3:服务器A返回更新后的模型给各参与方;

step4:各参与方更新各自模型。

步骤解读:在传统的机器学习建模中,通常是把模型训练需要的数据集合到一个数据中心然后再训练模型,之后预测。在横向联邦学习中,可以看作是基于样本的分布式模型训练,分发全部数据到不同的机器,每台机器从服务器下载模型,然后利用本地数据训练模型,之后返回给服务器需要更新的参数;服务器聚合各机器上的返回的参数,更新模型,再把最新的模型反馈到每台机器。

在这个过程中,每台机器下都是相同且完整的模型,且机器之间不交流不依赖,在预测时每台机器也可以独立预测,可以把这个过程看作成基于样本的分布式模型训练。谷歌最初就是采用横向联邦的方式解决安卓手机终端用户在本地更新模型的问题的。

纵向联邦学习

适用场景:

纵向联邦学习的本质是特征的联合,适用于用户重叠多,特征重叠少的场景,比如同一地区的商超和银行,他们触达的用户都为该地区的居民(样本相同),但业务不同(特征不同)。

学习过程:

纵向联邦学习的本质是交叉用户在不同业态下的特征联合,比如商超A和银行B,在传统的机器学习建模过程中,需要将两部分数据集中到一个数据中心,然后再将每个用户的特征join成一条数据用来训练模型,所以就需要双方有用户交集(基于join结果建模),并有一方存在label。其学习步骤如上图所示,分为两大步:

第一步:加密样本对齐。是在系统级做这件事,因此在企业感知层面不会暴露非交叉用户。

第二步:对齐样本进行模型加密训练:

step1:由第三方C向A和B发送公钥,用来加密需要传输的数据;

step2:A和B分别计算和自己相关的特征中间结果,并加密交互,用来求得各自梯度和损失;

step3:A和B分别计算各自加密后的梯度并添加掩码发送给C,同时B计算加密后的损失发送给C;

step4:C解密梯度和损失后回传给A和B,A、B去除掩码并更新模型。

步骤解读:我们以线性回归为例具体说明其训练过程。

存在数据集 [公式] [公式] ,A和B分别初始化模型参数 [公式]

其目标函数为:[公式]

令:[公式] ,且对原目标函数同态加密后可表示为:

[公式] , [公式] 表示同态加密, [公式] , [公式] , [公式] ,

因此有 [公式] ,同理令 [公式] ,

梯度可表示如下:

具体训练步骤如下:

在整个过程中参与方都不知道另一方的数据和特征,且训练结束后参与方只得到自己侧的模型参数,即半模型。

预测过程:

由于各参与方只能得到与自己相关的模型参数,预测时需要双方协作完成,如下图所示:

共同建模的结果:

  • 双方均获得数据保护
  • 共同提升模型效果
  • 模型无损失

联邦迁移学习

适用场景:

当参与者间特征和样本重叠都很少时可以考虑使用联邦迁移学习,如不同地区的银行和商超间的联合。主要适用于以深度神经网络为基模型的场景。

迁移学习介绍:

迁移学习,是指利用数据、任务、或模型之间的相似性,将在源领域学习过的模型,应用于 目标领域的一种学习过程。

其实我们人类对于迁移学习这种能力,是与生俱来的。比如,我们如果已经会打乒乓球,就可以类比着学习打网球。再比如,我们如果已经会下中国象棋,就可以类比着下国际象棋。因为这些活动之间,往往有着极高的相似性。生活中常用的“举一反三”、“照猫画虎”就很好地体现了迁移学习的思想。

迁移学习的核心是,找到源领域和目标领域之间的相似性,举一个杨强教授经常举的例子来说明:我们都知道在*开车时,驾驶员坐在左边,靠马路右侧行驶。这是基本的规则。然而,如果在英国、香港等地区开车,驾驶员是坐在右边,需要靠马路左侧行驶。那么,如果我们从*到了香港,应该如何快速地适应 他们的开车方式呢?诀窍就是找到这里的不变量:不论在哪个地区,驾驶员都是紧靠马路中间。这就是我们这个开车问题中的不变量。 找到相似性 (不变量),是进行迁移学习的核心。

学习过程:

联邦迁移学习的步骤与纵向联邦学习相似,只是中间传递结果不同(实际上每个模型的中间传递结果都不同)。这里重点讲一下联邦迁移的思想:

源域: [公式] ,目标域: [公式] ,我们假设源域和目标域间存在共同样本 [公式] ,对于其共同样本存在 [公式] , [公式] 分别为源域和目标域间的隐层特征不变量,我们定义对目标域的分类函数为: [公式]

目标函数:

[公式]

[公式]

整体目标函数为: [公式]

使用BP算法,根据目标函数 [公式] 分别对 [公式] 求梯度,双方交互计算梯度和损失需要用到的中间结果,重复迭代直至收敛。整个学习过程是利用A、B之间共同样本来学习两者间各自的特征不变量表示 [公式],同时利用A的所有样本label [公式] 和A的不变量特征 [公式] 学习分类器。在这个阶段中,[联邦] 体现在A,B可以通过安全交互中间结果共同学习一个模型,[迁移] 体现在B迁移了A的分类能力。在预测时, [公式] 依赖于 由[公式] 组成的分类器,因此和纵向联邦相同需要两者协作来完成。本节参考文章:Secure Federated Transfer Learning

 

联邦学习源码

1.https://www.tensorflow.org/federated/

2.https://github.com/WeBankFinTech/FATE

 

分类:

技术点:

相关文章: