神经网络

深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算

# 深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算 # 1.计算机视觉与卷积神经网络 ## 1.1计算机视觉综述 计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目 ... »

ting1

循环神经网络TextRNN实现情感短文本分类任务

目录 情感短文本分类 TextRNN的基本原理 TextRNN在情感短文本分类中的应用 总结 情感短文本分类 TextRNN是一种循环神经网络(RNN)结构,特别适用于处理序列数据。它通过将上一个时刻的隐状态与当前时刻的输入进行结合,来预测下一个时刻的输出。 情感短文本分类是指将文本数据 »

卷积神经网络CharCNN实现中文情感分类任务

目录 中文情感分类 CharCNN的基本原理 CharCNN在中文情感分类中的应用 总结 中文情感分类 CharCNN是一种卷积神经网络(CNN)结构,输入为字符级别的文本数据,并采用卷积加池化操作来提取有意义的特征并分类。CharCNN已被用于各种自然语言处理任务,如语音识别、情感分析、 »

神经网络算法RNN实现时间序列预测

目录 时间序列预测 RNN简介 RNN在时间序列预测中的应用 如何使用RNN实现时间序列预测 总结 时间序列预测 时间序列是按照时间顺序排列的数据集合,在很多应用中都非常常见。时间序列分析是对这些数据进行分析和预测的过程。时间序列预测是该分析的一个重要组成部分,它可以根据已有的时间序列 »

使用pytorch进行张量计算、自动求导和神经网络构建功能

目录 张量计算 张量的属性和方法,如何使用它们来获取或修改张量的信息和形状 张量之间的运算和广播机制,如何使用torch.add(), torch.sub(), torch.mul(), torch.div()等函数或者运算符来实现 张量与numpy数组之间的互相转换和共享内存机制 自动求导 »

机器学习(四):4层BP神经网络(只用numpy不调包)用于训练鸢尾花数据集|准确率96%

题目: 设计四层BP网络,以g(x)=sigmoid(x)为激活函数, 神经网络结构为:[4,10,6, 3],其中,输入层为4个节点,第一个隐含层神经元个数为10个节点;第二个隐含层神经元个数为6个节点,输出层为3个节点 利用训练数据iris-train.txt对BP神经网络分别进行训练,对训练后 ... »

卷积神经网络如何实现提取特征

目录 图像在计算机中的存储 1、黑白或灰度图像如何存储在计算机中 2、彩色图像如何存储在计算机中 矩阵的特征值与特征向量 图像特征与特征向量 卷积提取特征 总结 图像在计算机中的存储 图像其实就是一个像素值组成的矩阵。 1、黑白或灰度图像如何存储在计算机中 在这里,我们已经采取 »

构建基于深度学习神经网络协同过滤模型(NCF)的视频推荐系统(Python3.10/Tensorflow2.11)

毋庸讳言,和传统架构(BS开发/CS开发)相比,人工智能技术确实有一定的基础门槛,它注定不是大众化,普适化的东西。但也不能否认,人工智能技术也具备像传统架构一样“套路化”的流程,也就是说,我们大可不必自己手动构建基于神经网络的机器学习系统,直接使用深度学习框架反而更加简单,深度学习可以帮助我们自动地... ... »

v3ucn

机器学习算法(八):基于BP神经网络的乳腺癌的分类预测

BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则... ... »

ting1

动手造轮子自己实现人工智能神经网络(ANN),解决鸢尾花分类问题Golang1.18实现

人工智能神经网络( Artificial Neural Network,又称为ANN)是一种由人工神经元组成的网络结构,神经网络结构是所有机器学习的基本结构,换句话说,无论是深度学习还是强化学习都是基于神经网络结构进行构建。关于人工神经元,请参见:人工智能机器学习底层原理剖析,人造神经元,您一定能看 ... »

v3ucn

动手造轮子自己实现人工智能神经网络(ANN),解决鸢尾花分类问题Golang1.18实现

人工智能神经网络( Artificial Neural Network,又称为ANN)是一种由人工神经元组成的网络结构,神经网络结构是所有机器学习的基本结构,换句话说,无论是深度学习还是强化学习都是基于神经网络结构进行构建。关于人工神经元,请参见:人工智能机器学习底层原理剖析,人造神经元,您一定能看 ... »

v3ucn

人工智能机器学习底层原理剖析,人造神经元,您一定能看懂,通俗解释把AI“黑话”转化为“白话文”

按照固有思维方式,人们总以为人工智能是一个莫测高深的行业,这个行业的人都是高智商人群,无论是写文章还是和人讲话,总是讳莫如深,接着就是蹦出一些“高级”词汇,什么“神经网络”,什么“卷积神经”之类,教人半懂不懂的。尤其ChatGPT的风靡一时,更加“神话”了这个行业,用鲁迅先生形容诸葛武侯的话来讲:“... ... »

v3ucn

人工智能机器学习底层原理剖析,人造神经元,您一定能看懂,通俗解释把AI“黑话”转化为“白话文”

按照固有思维方式,人们总以为人工智能是一个莫测高深的行业,这个行业的人都是高智商人群,无论是写文章还是和人讲话,总是讳莫如深,接着就是蹦出一些“高级”词汇,什么“神经网络”,什么“卷积神经”之类,教人半懂不懂的。尤其ChatGPT的风靡一时,更加“神话”了这个行业,用鲁迅先生形容诸葛武侯的话来讲:“... ... »

v3ucn

如何用Python对股票数据进行LSTM神经网络和XGboost机器学习预测分析(附源码和详细步骤),学会的小伙伴们说不定就成为炒股专家一夜暴富了

最近调研了一下我做的项目受欢迎程度,大数据分析方向竟然排第一,尤其是这两年受疫情影响,大家都非常担心自家公司裁员或倒闭,都想着有没有其他副业搞搞或者炒炒股、投资点理财产品,未雨绸缪,所以不少小伙伴要求我这边分享下关于股票预测分析的技巧。基于股票数据是一个和时间序列相关的大数据,所以我打算给大家分享时... ... »