【问题标题】:How to check if object is of type "matplotlib.collections.PolyCollection"如何检查对象是否属于“matplotlib.collections.PolyCollection”类型
【发布时间】:2025-12-01 20:10:02
【问题描述】:

对于一个特定的任务(Link)我想检查一个对象是否是:

matplotlib.collections.PolyCollection

或一个:

matplotlib.lines.Line2D

对象。

我是这样累的:

 if isinstance(handle, matplotlib.collections.PolyCollection):

但这不起作用。如果想测试两个变量 h 和句柄是否属于同一类型,我将如何检查它们是否是 matplotlib.collections.PolyCollectionmatplotlib.lines.Line2D对象?

编辑1

这是有问题的代码,它适应了上述链接中的解决方案:

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
import math


def is_inlist(handle, handles):
    for h in handles:
        if h.get_color() == handle.get_color() and \
            h.get_linestyle() == handle.get_linestyle() and \
            h.get_marker() == handle.get_marker():
            return True
    return False


lines=[]
labels=[]
legend_properties = {'weight':'bold','size':10}  
# Example data


mu = 0
mu2 = 5
variance = 1
variance2 = 2
sigma = math.sqrt(variance)
sigma2 = math.sqrt(variance2)
x = np.linspace(mu-3*variance,mu+3*variance, 100)
x2 = np.linspace(mu2-3*variance2,mu2+3*variance2, 100)

nrows = 4
# Plot

fig, axis = plt.subplots(nrows, sharex=True, sharey=False, figsize=(5, 8))
fig.subplots_adjust(hspace=0.0001)
#fig.suptitle("Stacked Plots with global Legend wich contains to little elements",fontsize=14,weight='bold')


axis[0].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[0].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='orange',alpha=0.5,label="PEAK2", interpolate=True)
axis[0].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[0].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[0].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)

axis[1].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[1].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='purple',alpha=0.5,label="PEAK2", interpolate=True)
axis[1].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[1].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[1].fill_between(x+6.5,0,mlab.normpdf(x, mu, sigma), color='yellow',alpha=0.5,label="PEAK5", interpolate=True)
axis[1].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)

axis[2].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[2].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='orange',alpha=0.5,label="PEAK2", interpolate=True)
axis[2].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='#73d216',alpha=0.5,label="PEAK3", interpolate=True)
axis[2].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[2].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)


axis[3].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[3].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='purple',alpha=0.5,label="PEAK2", interpolate=True)
axis[3].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[3].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[3].fill_between(x+6.5,0,mlab.normpdf(x, mu, sigma), color='#73d216',alpha=0.5,label="PEAK5", interpolate=True)
axis[3].fill_between(x+5.5,0,mlab.normpdf(x, mu, sigma), color='violet',alpha=0.5,label="PEAK6", interpolate=True)
axis[3].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)







for i in range(nrows):
    h, l = axis[i].get_legend_handles_labels()
    for hi, li in zip(h,l):
        if not is_inlist(hi, lines):
            lines.append(hi)
            labels.append(li)





#x for x in item if x not in Z











# only 3 Legend entrys Label1 , Label2 and Label3 are visible .. Differences in cloors and markers are ignored
plt.legend(handles=lines, labels=labels,bbox_to_anchor=(0., nrows+.02, 1., .102), loc=3,ncol=3, prop=legend_properties,mode="expand", borderaxespad=0.,frameon=False,framealpha=0.0) 


plt.show()

不幸的是它给了我错误:

    Traceback (most recent call last):
      File "PATH..../.py", line 76, in <module>
        if not is_inlist(hi, lines):
      File "PATH..../.py", line 9, in is_inlist
        if h.get_color() == handle.get_color() and \
    AttributeError: 'PolyCollection' object has no attribute 'get_color'

有人建议我对每种类型的 matplotlib 对象进行案例分析。这就是我挣扎的地方。 我想更改“is_inlist”功能并适用于不同的情况。但是案例分析本身还不行:

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
import math


def is_inlist(handle, handles):
    for h in handles:
        if isinstance(handle, matplotlib.collections.PolyCollection) and isinstance(h, matplotlib.collections.PolyCollection):
            if h.get_color() == handle.get_color() and \
                h.get_linestyle() == handle.get_linestyle() and \
                h.get_marker() == handle.get_marker():
                return True
        if isinstance(handle, matplotlib.lines.Line2D) and isinstance(h, matplotlib.lines.Line2D):
            if h.get_color() == handle.get_color() and \
                h.get_linestyle() == handle.get_linestyle() and \
                h.get_marker() == handle.get_marker():
                return True        


    return False


lines=[]
labels=[]
legend_properties = {'weight':'bold','size':10}  
# Example data


mu = 0
mu2 = 5
variance = 1
variance2 = 2
sigma = math.sqrt(variance)
sigma2 = math.sqrt(variance2)
x = np.linspace(mu-3*variance,mu+3*variance, 100)
x2 = np.linspace(mu2-3*variance2,mu2+3*variance2, 100)

nrows = 4
# Plot

fig, axis = plt.subplots(nrows, sharex=True, sharey=False, figsize=(5, 8))
fig.subplots_adjust(hspace=0.0001)
#fig.suptitle("Stacked Plots with global Legend wich contains to little elements",fontsize=14,weight='bold')


axis[0].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[0].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='orange',alpha=0.5,label="PEAK2", interpolate=True)
axis[0].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[0].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[0].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)

axis[1].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[1].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='purple',alpha=0.5,label="PEAK2", interpolate=True)
axis[1].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[1].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[1].fill_between(x+6.5,0,mlab.normpdf(x, mu, sigma), color='yellow',alpha=0.5,label="PEAK5", interpolate=True)
axis[1].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)

axis[2].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[2].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='orange',alpha=0.5,label="PEAK2", interpolate=True)
axis[2].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='#73d216',alpha=0.5,label="PEAK3", interpolate=True)
axis[2].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[2].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)


axis[3].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[3].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='purple',alpha=0.5,label="PEAK2", interpolate=True)
axis[3].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[3].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[3].fill_between(x+6.5,0,mlab.normpdf(x, mu, sigma), color='#73d216',alpha=0.5,label="PEAK5", interpolate=True)
axis[3].fill_between(x+5.5,0,mlab.normpdf(x, mu, sigma), color='violet',alpha=0.5,label="PEAK6", interpolate=True)
axis[3].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)



for i in range(nrows):
    h, l = axis[i].get_legend_handles_labels()
    for hi, li in zip(h,l):
        if not is_inlist(hi, lines):
            lines.append(hi)
            labels.append(li)






# only 3 Legend entrys Label1 , Label2 and Label3 are visible .. Differences in cloors and markers are ignored
plt.legend(handles=lines, labels=labels,bbox_to_anchor=(0., nrows+.02, 1., .102), loc=3,ncol=3, prop=legend_properties,mode="expand", borderaxespad=0.,frameon=False,framealpha=0.0) 


plt.show()

我得到的错误是:

    Traceback (most recent call last):
      File "Path/.. .py", line 84, in <module>
        if not is_inlist(hi, lines):
      File "Path/.. .py", line 9, in is_inlist
        if isinstance(handle, matplotlib.collections.PolyCollection) and isinstance(handle, matplotlib.collections.PolyCollection):
    NameError: global name 'matplotlib' is not defined

编辑2

我补充说:

import matplotlib.collections

按照我的建议

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
import math
import matplotlib.collections

def is_inlist(handle, handles):
    for h in handles:
        if isinstance(handle, matplotlib.collections.PolyCollection) and isinstance(h, matplotlib.collections.PolyCollection):
            if h.get_facecolor() == handle.get_facecolor() and \
                h.get_linestyle() == handle.get_linestyle() and \
                h.get_alpha() == handle.get_alpha():
                return True
        if isinstance(handle, matplotlib.lines.Line2D) and isinstance(h, matplotlib.lines.Line2D):
            if h.get_color() == handle.get_color() and \
                h.get_linestyle() == handle.get_linestyle() and \
                h.get_marker() == handle.get_marker():
                return True        


    return False


lines=[]
labels=[]
legend_properties = {'weight':'bold','size':10}  
# Example data


mu = 0
mu2 = 5
variance = 1
variance2 = 2
sigma = math.sqrt(variance)
sigma2 = math.sqrt(variance2)
x = np.linspace(mu-3*variance,mu+3*variance, 100)
x2 = np.linspace(mu2-3*variance2,mu2+3*variance2, 100)

nrows = 4
# Plot

fig, axis = plt.subplots(nrows, sharex=True, sharey=False, figsize=(5, 8))
fig.subplots_adjust(hspace=0.0001)
#fig.suptitle("Stacked Plots with global Legend wich contains to little elements",fontsize=14,weight='bold')


axis[0].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[0].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='orange',alpha=0.5,label="PEAK2", interpolate=True)
axis[0].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[0].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[0].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)

axis[1].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[1].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='purple',alpha=0.5,label="PEAK2", interpolate=True)
axis[1].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[1].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[1].fill_between(x+6.5,0,mlab.normpdf(x, mu, sigma), color='yellow',alpha=0.5,label="PEAK5", interpolate=True)
axis[1].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)

axis[2].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[2].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='orange',alpha=0.5,label="PEAK2", interpolate=True)
axis[2].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='#73d216',alpha=0.5,label="PEAK3", interpolate=True)
axis[2].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[2].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)


axis[3].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[3].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='purple',alpha=0.5,label="PEAK2", interpolate=True)
axis[3].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[3].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[3].fill_between(x+6.5,0,mlab.normpdf(x, mu, sigma), color='#73d216',alpha=0.5,label="PEAK5", interpolate=True)
axis[3].fill_between(x+5.5,0,mlab.normpdf(x, mu, sigma), color='violet',alpha=0.5,label="PEAK6", interpolate=True)
axis[3].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)



for i in range(nrows):
    h, l = axis[i].get_legend_handles_labels()
    for hi, li in zip(h,l):
        if not is_inlist(hi, lines):
            lines.append(hi)
            labels.append(li)






# only 3 Legend entrys Label1 , Label2 and Label3 are visible .. Differences in cloors and markers are ignored
plt.legend(handles=lines, labels=labels,bbox_to_anchor=(0., nrows-1+.02, 1., .102), loc=3,ncol=3, prop=legend_properties,mode="expand", borderaxespad=0.,frameon=False,framealpha=0.0) 


plt.show()

我现在得到的错误是:

    Traceback (most recent call last):
      File "Path/.. .py", line 80, in <module>
        if not is_inlist(hi, lines):
      File "Dath/.. .py", line 10, in is_inlist
        if h.get_facecolor() == handle.get_facecolor() and \
    ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

解决方案基于 ImportanceOfBeingErnest 的解释:

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.mlab as mlab
import math
import matplotlib.collections

def is_inlist(handle, handles):
    for h in handles:
        if isinstance(handle, matplotlib.collections.PolyCollection) and isinstance(h, matplotlib.collections.PolyCollection): 
            if np.all(h.get_facecolor() == handle.get_facecolor()) and \
                np.all(h.get_linestyle() == handle.get_linestyle()) and \
                np.all(h.get_alpha() == handle.get_alpha()):
                return True
        elif isinstance(handle, matplotlib.lines.Line2D) and isinstance(h, matplotlib.lines.Line2D):
            if h.get_color() == handle.get_color() and \
                h.get_linestyle() == handle.get_linestyle() and \
                h.get_marker() == handle.get_marker():
                return True        


    return False


lines=[]
labels=[]
legend_properties = {'weight':'bold','size':10}  
# Example data


mu = 0
mu2 = 5
variance = 1
variance2 = 2
sigma = math.sqrt(variance)
sigma2 = math.sqrt(variance2)
x = np.linspace(mu-3*variance,mu+3*variance, 100)
x2 = np.linspace(mu2-3*variance2,mu2+3*variance2, 100)

nrows = 4
# Plot

fig, axis = plt.subplots(nrows, sharex=True, sharey=False, figsize=(5, 8))
fig.subplots_adjust(hspace=0.0001)
#fig.suptitle("Stacked Plots with global Legend wich contains to little elements",fontsize=14,weight='bold')


axis[0].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[0].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='orange',alpha=0.5,label="PEAK2", interpolate=True)
axis[0].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[0].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[0].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)

axis[1].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[1].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='purple',alpha=0.5,label="PEAK2", interpolate=True)
axis[1].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[1].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[1].fill_between(x+6.5,0,mlab.normpdf(x, mu, sigma), color='yellow',alpha=0.5,label="PEAK5", interpolate=True)
axis[1].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)

axis[2].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[2].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='orange',alpha=0.5,label="PEAK2", interpolate=True)
axis[2].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='#73d216',alpha=0.5,label="PEAK3", interpolate=True)
axis[2].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[2].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)


axis[3].fill_between(x+6,0,mlab.normpdf(x, mu, sigma), color='green',alpha=0.5,label="PEAK1", interpolate=True)
axis[3].fill_between(x+4,0,mlab.normpdf(x, mu, sigma), color='purple',alpha=0.5,label="PEAK2", interpolate=True)
axis[3].fill_between(x+3,0,mlab.normpdf(x, mu, sigma), color='blue',alpha=0.5,label="PEAK3", interpolate=True)
axis[3].fill_between(x+7,0,mlab.normpdf(x, mu, sigma), color='red',alpha=0.5,label="PEAK4", interpolate=True)
axis[3].fill_between(x+6.5,0,mlab.normpdf(x, mu, sigma), color='#73d216',alpha=0.5,label="PEAK5", interpolate=True)
axis[3].fill_between(x+5.5,0,mlab.normpdf(x, mu, sigma), color='violet',alpha=0.5,label="PEAK6", interpolate=True)
axis[3].plot(x2,2.5*mlab.normpdf(x2, mu2, sigma2),color='black',linestyle="",label="Exp", marker="o", markersize=4)



for i in range(nrows):
    h, l = axis[i].get_legend_handles_labels()
    for hi, li in zip(h,l):
        if not is_inlist(hi, lines):
            lines.append(hi)
            labels.append(li)






# only 3 Legend entrys Label1 , Label2 and Label3 are visible .. Differences in cloors and markers are ignored
plt.legend(handles=lines, labels=labels,bbox_to_anchor=(0., nrows-1+.02, 1., .102), loc=3,ncol=3, prop=legend_properties,mode="expand", borderaxespad=0.,frameon=False,framealpha=0.0) 


plt.show()

【问题讨论】:

  • 您能否更具体地说明它是如何不起作用的?这是类型检查的常用方法。
  • if isinstance(handle, matplotlib.collections.PolyCollection): 是完全正确的。 “但它不起作用”不是正确的问题描述。始终提供minimal reproducible example
  • 显示你的import ... 行,关于PolyCollection
  • @ImportanceOfBeingErnest 我添加了一个 MWE,但出现了错误。
  • 好吧,同一篇文章中的问题太多,“编辑”太多,标题和问题几乎没有关系,请尽量专注于一个问题,不要'不要要求 SO 社区逐行调试你的代码

标签: python matplotlib object-type


【解决方案1】:

解决初始问题的方法是实际导入提供类的模块进行比较。

你只是缺少import matplotlib.collections

下一个错误实际上是不言自明的。它说不可能比较两个数组。

所以让我们说
h 的 facecolor 是 [[ 0., 0.50196078, 0., 0.5]]
handle 的 facecolor 是 [[ 1., 0.64705882, 0., 0.5]],然后
h.get_facecolor() == handle.get_facecolor() 导致 [[False False True True]]

现在,两次为真,两次为真,是真还是假?一个人无法知道。因此,您需要使用any()all() 来决定是否要知道是否有任何元素为True,或者是否所有元素都为True。

在这里你想检查相同的颜色,因此使用all

np.all(h.get_facecolor() == handle.get_facecolor())

【讨论】:

  • 非常感谢您的帮助。如果我可以问一个相关的问题:np.array_equal(h.get_facecolor(),handle.get_facecolor())np.allclose(h.get_facecolor(),handle.get_facecolor(), rtol=1e-05, atol=1e-08 ) 似乎也可以。这些比较之一是否有固有的优势?
  • 从这里的应用来看,我看不出有什么不同。
  • 出于兴趣,是否可以使用 np.all() 函数将单个 itemhi 与数组或列表中的每个条目进行比较 lif np.all( l == hi) : 一样?
  • 您可以使用 np.all() 将单个项目与 numpy 数组进行比较。这不适用于通常的 python 列表。
  • 不幸的是,我资助了一个小错误。函数is_inlist 忽略任何名称不同但颜色已经存在的条目。我想解决这个问题。如果让这个函数也通过linelines 并添加elif label not in labels: return False 给我,一切似乎都很好。但我不确定我是否遗漏了什么。