Pytorch随机数生成常用方法有哪些
本篇文章和大家了解一下Pytorch随机数生成常用方法有哪些。有一定的参考价值,有需要的朋友可以参考一下,希望对大家有所帮助。 一、torch.rand():构造均匀分布张量的方法 torch.rand是用于生成均匀随机分布张量的函数,从区间[0,1)的均匀分布中随机抽取一个随机数生成一个张量,其调 »
本篇文章和大家了解一下Pytorch随机数生成常用方法有哪些。有一定的参考价值,有需要的朋友可以参考一下,希望对大家有所帮助。 一、torch.rand():构造均匀分布张量的方法 torch.rand是用于生成均匀随机分布张量的函数,从区间[0,1)的均匀分布中随机抽取一个随机数生成一个张量,其调 »
> 基于`torch.nn`搭建神经网络的基础教程大纲: ## **1. 引言** 在我们开始深入探讨`torch.nn`之前,我们首先需要理解PyTorch及其神经网络库的基础知识。这一部分的内容将帮助你对PyTorch有一个整体的了解。 ### 1.1 **为什么选择PyTorch?** - * ... »
笔者的运行环境:python3.8+pytorch2.0.1+pycharm+kaggle用到的网络框架:yolov5、crnn+ctc项目地址:[GitHub - WangPengxing/plate_identification: 利用yolov5、crnn+ctc进行车牌识别](https:/ ... »
基于pytorch、transformers做中文领域的nlp开箱即用的训练框架,提供全套的训练、微调模型(包括大模型、文本转向量、文本生成、多模态等模型)的解决方案。 ... »
>在本文中,我们深入探讨了循环神经网络(RNN)及其高级变体,包括长短时记忆网络(LSTM)、门控循环单元(GRU)和双向循环神经网络(Bi-RNN)。文章详细介绍了RNN的基本概念、工作原理和应用场景,同时提供了使用PyTorch构建、训练和评估RNN模型的完整代码指南。 > 作者 TechLea ... »
笔者的运行环境:python3.8+pytorch2.0.1+pycharm+kaggle。yolov5对python和pytorch版本是有要求的,python>=3.8,pytorch>=1.6。yolov5共有5种类型n\s\l\m\x,参数量依次递增,对训练设备的要求也是递增。本文以yolo ... »
YOLOv5是Glenn Jocher等人研发,它是Ultralytics公司的开源项目。YOLOv5根据参数量分为了`n、s、m、l、x`五种类型,其参数量依次上升,当然了其效果也是越来越好。从2020年6月发布至2022年11月已经更新了7个大版本,在v7版本中还添加了语义分割的功能。本文以YO ... »
利用深度学习进行目标检测的算法可分为两类:two-stage和one-stage。two-stage类的算法,是基于Region Proposal的,它包括R-CNN,Fast R-CNN, Faster R-CNN;one-stage类的算法仅仅使用一个CNN网络直接预测不同目标的类别与位置,它包 ... »
Anaconda是一个非常方便的python版本管理工具,可以很方便地切换不同版本的Python进行测试。同时不同版本之间也不存在相互的干扰。 PyCharm是一款常见的Python IDE,pytorch和TensorFlow是目前两个主流的深度学习框架。 Anaconda安装 前往官方网址下载最 ... »
“工欲善其事,必先利其器”,掌握ResNet网络有必要先了解其原理和源码。本文分别从原理、源码、运用三个方面出发行文,先对ResNet原理进行阐述,然后对pytorch中的源码进行详细解读,最后再基于迁移学习对模型进行调整、实战。本文若有疏漏、需更正、改进的地方,望读者予以指正!!!笔者的运行设备与 ... »
本文是利用pytorch自定义CNN网络系列的第四篇,主要介绍如何训练一个CNN网络,关于本系列的全文见这里。 笔者的运行设备与软件:CPU (AMD Ryzen™ 5 4600U) + pytorch (1.13,CPU版) + jupyter; 训练模型是为了得到合适的参数权重,设计模型的训练时 ... »
本文是利用pytorch自定义CNN网络系列的第三篇,主要介绍如何构建一个CNN网络,关于本系列的全文见[这里](https://www.cnblogs.com/wpx123/p/17613613.html "这里")。 笔者的运行设备与软件:CPU (AMD Ryzen™ 5 4600U) + p ... »
本文是利用pytorch自定义CNN网络系列的第二篇,主要介绍构建网络前数据集的准备,关于本系列的全文见[这里](https://www.cnblogs.com/wpx123/p/17613613.html "这里")。 笔者的运行设备与软件:CPU (AMD Ryzen™ 5 4600U) + p ... »
本文是利用pytorch自定义CNN网络系列的第一篇,主要介绍 torchvision工具箱及其使用,关于本系列的全文见[这里](https://www.cnblogs.com/wpx123/p/17613613.html "这里")。 笔者的运行设备与软件:CPU (AMD Ryzen™ 5 46 ... »
本文的主要内容是利用pytorch框架与torchvision工具箱,进行准备数据集、构建CNN网络模型、训练模型、保存和加载自定义模型等工作。本文若有疏漏、需更正、改进的地方,望读者予以指正,如果本文对您有一定点帮助,请您给个赞、推荐和关注哦,在此,谢谢大家啦!!!笔者的运行设备与软件:CPU ( ... »
1. 保存整个网络 torch.save(net, PATH) model = torch.load(PATH) 2. 保存网络中的参数(速度快,占空间小) torch.save(net.state_dict(),PATH) model_dict = model.load_state_dict(to ... »
> 本文通过详细且实践性的方式介绍了 PyTorch 的使用,包括环境安装、基础知识、张量操作、自动求导机制、神经网络创建、数据处理、模型训练、测试以及模型的保存和加载。 # 1. Pytorch简介  线性回归是一种统计学中的预测分析,该方法用于建立两种或两种以 ... »
目前主流的深度学习框架都选择使用计算图来抽象神经网络计算表达,通过通用的数据结构(张量)来理解、表达和执行神经网络模型,通过计算图可以把 AI 系统化的问题形象地表示出来。 本节将会以AI概念落地的时候,遇到的一些问题与挑战,因此引出了计算图的概念来对神经网络模型进行统一抽象。接着展开什么是计算,... ... »
### 一、MicroGrad MicroGrad是大牛Andrej Karpathy写的一个非常轻量级别的神经网络库(框架),其基本构成为一个90行python代码的标量反向传播(自动微分)引擎,以及在此基础上实现的神经网络层。 其介绍如下: > A tiny scalar-valued auto ... »