神经网络

使用TorchLens可视化一个简单的神经网络

TorchLens:可用于可视化任何PyTorch模型,一个包用于在一行代码中提取和映射PyTorch模型中每个张量运算的结果。TorchLens功能非常强大,如果能够熟练掌握,算是可视化PyTorch模型的一把利剑。本文通过TorchLens可视化一个简单神经网络,算是抛砖引玉吧。 一.定义一个简 ... »

shengshengwang

聊聊神经网络的基础知识

来自《深度学习入门:基于Python的理论与实现》 张量 Numpy、TensorFlow、Pytorch等框架主要是为了计算张量或是基于张量计算。 标量:0阶张量;12,4,3, 向量:一阶张量;[12,4,3] 矩阵:二阶张量;[ [12,4,3], [11,2,3] ] 多阶张量:多维数组; ... »

zhiyong-ITNote

多层前馈神经网络及BP算法

一.多层前馈神经网络 首先说下多层前馈神经网络,BP算法,BP神经网络之间的关系。多层前馈[multilayer feed-forward]神经网络由一个输入层、一个或多个隐藏层和一个输出层组成,后向传播(BP)算法在多层前馈神经网络上面进行学习,采用BP算法的(多层)前馈神经网络被称为BP神经网络 ... »

shengshengwang

前馈神经网络解密:深入理解人工智能的基石

> 本文深入探讨了前馈神经网络(FNN)的核心原理、结构、训练方法和先进变体。通过Python和PyTorch的实战演示,揭示了FNN的多样化应用。 > 作者TechLead,拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师, ... »

xfuture

循环神经网络RNN完全解析:从基础理论到PyTorch实战

>在本文中,我们深入探讨了循环神经网络(RNN)及其高级变体,包括长短时记忆网络(LSTM)、门控循环单元(GRU)和双向循环神经网络(Bi-RNN)。文章详细介绍了RNN的基本概念、工作原理和应用场景,同时提供了使用PyTorch构建、训练和评估RNN模型的完整代码指南。 > 作者 TechLea ... »

xfuture

头疼!卷积神经网络是什么?CNN结构、训练与优化一文全解

> 本文全面探讨了卷积神经网络CNN,深入分析了背景和重要性、定义与层次介绍、训练与优化,详细分析了其卷积层、激活函数、池化层、归一化层,最后列出其训练与优化的多项关键技术:训练集准备与增强、损失函数、优化器、学习率调整、正则化技巧与模型评估调优。旨在为人工智能学者使用卷积神经网络CNN提供全面的指 ... »

xfuture

基于卷积神经网络的MAE自监督方法

本文分享自华为云社区《基于卷积神经网络的MAE自监督方法》,作者: Hint 。 图像自监督预训练算法是近年来的重要研究方向,MAE是其中基于ViT实现的代表性方法,学习到了鲁棒的视觉特征。MAE全称是Masked Autoencoders,是由何凯明提出的自监督预训练方法,借鉴了BERT的预训练任 ... »

深度学习(十)——神经网络:非线性激活

# 一、Padding Layers简介 - **nn.ZeroPad2d**:在输入的tensor数据类型周围**用0进行填充** - **nn.ConstantPad2d**:在输入的tensor数据类型周围**用常数进行填充** 这个函数的主要作用是对输入的图像进行填充,但里面所有功能都能用n ... »

zoubilin

【机器学习】神经网络

# Neural Networks > 神经网络:一种计算模型,由大量的节点(或神经元)直接相互关联而构成。每个节点(除输入节点外)代表一种特定的输出函数(或者认为是运算),称为激励函数;每两个节点的连接都代表该信号在传输中所占的比重(即认为该信号对该节点的影响程度) > > 神经网络三要素:模型、 ... »

MrFeng2997

仪酷LabVIEW AI视觉工具包及开放神经网络交互工具包常见问题解答

## 前言 哈喽,各位朋友,好久不见~ 之前给大家分享了基于LabVIEW开发的AI视觉工具包及开放神经网络交互工具包,不少朋友私信说在安装和使用过程中会遇到一些问题,今天我们就集中回复一下大家问到最多的问题。如果大家在使用过程中还有其他问题,可以补充到评论区,我们这篇博文会持续补充更新大家遇到问题 ... »

virobotics

深度学习(七)——神经网络的卷积操作

# 卷积操作 # 一、torch.nn中Convolution Layers函数的介绍 ## 1. 参数介绍 - nn.Conv1d: Conv取自Convolution的前四个字母,1d代表的是一个一维操作。 - nn.Conv2d: 2d表示是一个二维的操作,比如图像就是一个二维的。 - 其余参 ... »

zoubilin

【神经网络】基于自注意力机制的深度学习

[toc] # 【神经网络】基于自注意力机制的深度学习 # 0. 背景介绍: 近年来,深度学习在人工智能领域取得了长足的进步,并在图像识别、语音识别、自然语言处理等领域取得了令人瞩目的成果。神经网络作为深度学习的核心组件之一,被广泛应用于各种应用场景中。其中,基于自注意力机制的深度学习技术是近年来神 ... »

the-art-of-ai ai

简单代码说明什么是神经网络?

本文由gpt4辅助撰写(gptschools.cn) 神经网络是一种模仿人脑神经元工作原理的计算模型,用于实现机器学习和人工智能系统。它由一系列相互连接的神经元(也称为节点或单元)组成,这些神经元组织成不同的层。神经网络通常包括输入层、一个或多个隐藏层和输出层。每个节点根据其输入数据和相应的权重计算 ... »

kekukele